

Simulations of Space Charge Effects at PS2

Ji Qiang and Robert Ryne

Lawrence Berkeley National Laboratory

LARP CM13 Collaboration Meeting, Nov. 4-6, Port Jefferson, NY, 2009

MaryLie/IMPACT (ML/I)

- Combines capabilities of MaryLie code (A. Dragt, U Md) with IMPACT code (J. Qiang, R. Ryne, LBNL) + new features
- Multiple capabilities in a single unified environment:
 - Map generation
 - Map analysis
 - Particle tracking w/ 3D space charge
 - Envelope tracking
 - Fitting and optimization
- Recent applications: ERL for e-cooling @ RHIC; CERN PS2

- 5th order optics
- 3D space charge
- 5th order rf cavity model
- 3D integrated Green func
- Photoinjector modeling
- "Automatic" commands

MAD front end LBNL

- MAD-style input
- Test suite
- Contributions from LBNL, UMd, Tech-X, LANL,...

ML/I

Test suite LBNL, U. Maryla FNAL, PSI

Error in E-field computed w/ different algorithms applied to a 2D Gaussian elliptical distribution w/ 500:1 aspect ratio

Integrated Green Function on 64x64 grid is more accurate on A than Hockney on 64x2048, 64x4096, 64x8192.

Alex Dragt, U. Md.

Map computation from surface data

IMPACT code suite

- IMPACT-Z: parallel PIC code (z-code)
- IMPACT-T: parallel PIC code (t-code)
- Envelope code, pre- and post-processors,...
- Optimized for parallel processing
- Applied to many projects: SNS, JPARC, RIA, FRIB, PS2, future light sources, advanced streak cameras,...
- Has been used to study photoinjectors for BNL e-cooling project, Cornell ERL, FNAL/A0, LBNL/APEX, ANL, JLAB, SLAC/LCLS

IMPACT-Z

- Parallel PIC code using coordinate "z" as the independent variable
- Key Features
 - Detailed RF accelerating and focusing model
 - —Multiple 3D Poisson solvers
 - Variety of boundary conditions
 - 3D Integrated Green Function
 - Multi-charge state
 - —Machine error studies and steering
 - —Wakes
 - —CSR (1D)
 - Run on both serial and multiple processor computers
 - —Multiple turn tracking
 - —Thin lens kick for nonlinear elements
 - Lumped space-charge calculation

Initial studies

- Able to read MAD description (except for SEQUENCE)
- ML/I and Synergia produced linear lattice functions in agreement w/ previous CERN results

IMPACT and ML/I agreed on single-particle trajectories

IMPACT and ML/I agreed on single-particle trajectories

Parameters Used in PS2 Simulations

Physical Parameters:

Vrf = 1.5 MV with f = 40 MHz

Ek = 4 GeV

 $Emit_x = Emit_y = 3 mm-mrad$

 $Emit_z = .098 \text{ eV-sec}$

Xrms = 4.51mm

Yrms = 2.81mm

Trms = 1.11 rad

Aperture = 8 cm

 $I = 4.2 \times 10^{11}$

Numerical Parameters:

60 SC per tur

65x65x128 grid points

1000,000 macroparticles

Zero current matching

- Zero current matched beam found using ML/I normal form capabilities:
 - Normalize 1-turn map: M=A⁻¹NA (A= normalizing map; N=normal form)
 - Let $\zeta=(x,p_x,y,p_y,t,p_t)$ and consider a function g that depends only on $(x^2+p_x^2),(y^2+p_y^2),(t^2+p_t^2)$
 - Then $f(\zeta)=g(A \zeta)$ is a matched beam.
 - Proof: The distribution after one turn is given by $f(M^{-1}\zeta) = g(AN A^{-1}. A (x^2+p_x^2), (y^2+p_y^2), (t^2+p_t^2)) = g(AN (x^2+p_x^2), (y^2+p_y^2), (t^2+p_t^2)) = g(A (x^2+p_x^2), (y^2+p_y^2), (t^2+p_t^2))$
 - We generated a distribution of 1M particles using this approach, performed element-by-element tracking with ML/I, verified match.
 - Then performed space-charge simulations w/ IMPACT-Z

Transverse Emittance Evolution w/o Space Charge Effects....

5743.77, 2.94291e-06

Transverse Tail (4th moments) evolution with space-charge effects

Transverse maximum amp. evolution with space-charge effects

Longitudinal Bunch Length Evolution w/o synchrotron motion

Frozen SC: means no synchrotron oscillation, no energy spread.

A Single Particle Spectra in Vertical Direction with 0 and with Frozen SC

A Single Particle Spectra in Horizontal Direction with 0 and with Frozen Screen

Betatron Tune Foot Print with 0 Current and with Frozen SC

Betatron Tune Foot Print with 0 Current and with Self-Consistent SC

A Single Particle Spectra in Horizontal Direction with 0 and with Self-Consistent SC

A Single Particle Spectra in Vertical Direction with 0 and with Self-Consistent SC

Summary and Future Plans

- Synchrotron oscillation enhances transverse emittance growth
- Space-charge effects at the injection energy could cause emittance growth for the initial PS2 lattice design
- Evaluate the space-charge effects for the new PS2 design lattice
- Add the energy ramping
- Help the lattice design optimization including the spacecharge effects
- Begin studying potential mitigation measure